# C.U.SHAH UNIVERSITY Winter Examination-2022

### Subject Name: Advanced Functional Analysis

| Subject Code: 5SC04AFA1 |                  | Branch: M.Sc. (Mathematics) |           |  |
|-------------------------|------------------|-----------------------------|-----------|--|
| Semester: 4             | Date: 19/09/2022 | Time: 02:30 To 05:30        | Marks: 70 |  |

#### **Instructions:**

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

## **SECTION – I**

| Q-1 |    | Attempt the Following questions                                                                                                                                                          | [07] |  |
|-----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|     | a. | Define Hilbert space.                                                                                                                                                                    | (01) |  |
|     | b. | Let <i>X</i> be an inner product space and $\{x_1, x_2,, x_n\}$ be orthogonal set in <i>X</i> . Prove that $  x_1 + x_2 + \dots + x_n  ^2 =   x_1  ^2 +   x_2  ^2 + \dots +   x_n  ^2$ . | (02) |  |
| с.  |    | State Bessel's inequality.                                                                                                                                                               | (02) |  |
|     | d. | State and prove Parallelogram Law.                                                                                                                                                       | (02) |  |
| Q-2 |    | Attempt all questions                                                                                                                                                                    | [14] |  |
|     | a. | State and prove Schwarz Inequality.                                                                                                                                                      |      |  |
|     | b. | Prove that $l^p$ is an inner product space if and only if $p = 2$ .                                                                                                                      | (05) |  |
|     | c. | • Let X be an inner product space and $\{x_1, x_2,\}$ be orthogonal set in X.<br>Then prove that $  x_1 + x_2 + \dots + x_n  ^2 =   x_1  ^2 +   x_2  ^2 + \dots +   x_n  ^2$ .           |      |  |
|     |    | OR                                                                                                                                                                                       |      |  |
| Q-2 |    | Attempt all questions                                                                                                                                                                    | [14] |  |
|     | a. | Let <i>X</i> be an inner product space and <i>E</i> be an orthonormal subset of <i>X</i> .                                                                                               | (08) |  |
|     |    | Then prove the following                                                                                                                                                                 |      |  |
|     |    | (i) For each $x \in X$ , $E_x = \{u \in E : \langle x, u \rangle \neq 0\}$ is countable.                                                                                                 |      |  |
|     |    | (ii) If $E_x = \{u_1, u_2,\}$ then $\langle x, u_n \rangle \to 0$ as $n \to \infty$ .                                                                                                    |      |  |
|     |    | (iii) If X is a Hilbert space and $\sum_{n=1}^{\infty} \langle x, u_n \rangle = u_n$ converges to $y \in X$ then $(x - y) \perp E$ .                                                     |      |  |
|     | b. | If <i>H</i> be Hilbert space, $\{\alpha_n\}$ be a sequence in <i>K</i> and $\{u_1, u_2,\}$ be an                                                                                         | (06) |  |
|     |    | orthonormal subset of <i>H</i> then prove that $\sum_{n=1}^{\infty} \alpha_n u_n$ converges in <i>H</i> if and                                                                           |      |  |
|     |    | only if $\sum_{n=1}^{\infty}  \alpha_n ^2 < \infty$ . In this case $\alpha_n = < x, u_n > \text{ for all } n$ .                                                                          |      |  |



| Q-3 |    | Attempt all questions                                                                                                                                                               | [14]  |
|-----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | a. | State and prove unique Hahn – Banach extension theorem.                                                                                                                             | (08)  |
|     | b. | Let X be an inner product space Y be a subspace of X and $x \in X$ . Then<br>show that $y \in Y$ is a best approximation from Y to x id and only if<br>$(x - y) \perp Y$ .          | (06)  |
|     |    | OR                                                                                                                                                                                  |       |
| Q-3 |    | Attempt all questions                                                                                                                                                               | [14]  |
|     | a. | State and prove Projection Theorem.                                                                                                                                                 | (08)  |
|     | D. | Let <i>H</i> be a Hilbert space and <i>X</i> be a subspace of <i>H</i> . Let $g \in X$ . Then show that there exists a unique $f \in H'$ such that $f _X = g$ and $  f   =   g  $ . | (00)  |
|     |    | SECTION – II                                                                                                                                                                        |       |
| Q-4 |    | Attempt the Following questions                                                                                                                                                     | [07]  |
|     | a. | Let <i>H</i> be a Hilbert space and $T, S \in BL(H)$ . Prove that<br>$(S + T)^* = S^* + T^*$                                                                                        | (01)  |
|     | b. | Define Compact Operator and Normal Operator.                                                                                                                                        | (02)  |
|     | c. | Let <i>H</i> be a Hilbert space and $T \in BL(H)$ be normal. If $x \in H$ such that                                                                                                 | (02)  |
|     |    | $(T - \lambda I)^2 x = 0$ then prove that $(T - \lambda I)x = 0$ .                                                                                                                  |       |
|     | d. | Let <i>H</i> be a Hilbert space and $T \in BL(H)$ . Prove that <i>T</i> is isometry if $T^*T = I$ .                                                                                 | (02)  |
| Q-5 |    | Attempt all questions                                                                                                                                                               | [14]  |
|     | a. | Let <i>H</i> be a Hilbert space and $T \in BL(H)$ . Then prove that <i>T</i> is bounded                                                                                             | (07)  |
|     | Ь  | below if and only if $R(T^*) = H$ .                                                                                                                                                 | (04)  |
|     | D. | Let <i>H</i> be a Hilbert space and $T \in BL(H)$ . Frow the following statements.<br>a) $\ker(T) = R(T^*)^{\perp}$                                                                 | (04)  |
|     |    | b) T is one-one if and only if $\overline{R(T^*)} = H$ .                                                                                                                            |       |
|     | c. | Prove that the set of all bounded self - adjoint operator on a Hilbert space                                                                                                        | (03)  |
|     |    | is closed in $BL(H)$ .                                                                                                                                                              |       |
| o = |    | OR                                                                                                                                                                                  | F4 43 |
| Q-5 | 0  | Attempt all questions<br>Let H be a Hilbert space and $T \in PL(H)$ Then show that there is a                                                                                       | [14]  |
|     | a. | unique $S \in BL(H)$ such that $\langle Tx, y \rangle = \langle x, Sy \rangle$ for every                                                                                            | (07)  |
|     |    | $x, y \in H$ and $  S   \leq   T  $ .                                                                                                                                               |       |
|     | b. | Let <i>H</i> be a Hilbert space and $S, T \in BL(H)$ . Prove the following:                                                                                                         | (07)  |
|     |    | (i) Let S and T be normal. If S commutes with $T^*$ and                                                                                                                             |       |
|     |    | T commutes with $S^*$ then $S + T$ and $ST$ are normal.                                                                                                                             |       |
|     |    | (ii) Let S and T be self-adjoint. Then $S + T$ is self-adjoint. Also $ST$ is self adjoint if and only if S and T commutes.                                                          |       |
| Q-6 |    | Attempt all questions                                                                                                                                                               | [14]  |
|     | a. | Let <i>H</i> be a Hilbert space and $T \in BL(H)$ be normal. Then prove that the                                                                                                    | (08)  |
|     |    | eigen vectors corresponding to distinct eigen values of $T$ are orthogonal.                                                                                                         |       |
|     | b. | Does me result hold II I is not normal (Justify.<br>Define Numerical Range of $T \in BI(H)$ Prove (i) $\sigma(T) \subset \overline{W(T)}$ and                                       | (06)  |
|     |    | (ii) $\sigma(T) \subset \overline{W(T)}$ .                                                                                                                                          | (00)  |



#### Q-6 **Attempt all Questions** [14] Let *H* be a Hilbert space and $T \in BL(H)$ . Then prove the following a. (08)

- $\sigma(T) = \left\{ \overline{\lambda :} \ \lambda \in \sigma(T^*) \right\}$ (i)
- (ii)  $\sigma_e(T) \subset \sigma_a(T)$  and  $\sigma(T) = \sigma_a(T) \cup \{\overline{\lambda} : \lambda \in \sigma_e(T^*)\}$ . Let *H* be a Hilbert space and  $T \in BL(H)$  be compact then show that  $T^*$  is (06) b. compact.

